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Abstract

The numerical investigation method of unsteady transfer processes in evaporating droplets in radiating media is
introduced, evaluating the dependence of optical spectral properties of material upon temperature. The distribution

of temperature and heat ¯uxes regularities in heating and simultaneously evaporating water droplets has been
investigated. It is shown that as a cause of interaction of radiation and conduction processes, the pro®le of the
temperature ®eld inside the droplet is distorted, and the magnitude and direction of heat conductivity ¯ux vector

changes. According to the maximum place in the instant temperature ®eld of the droplet, it is suggested to
distinguish three periods of state change for an evaporating droplet: initial, transient and ®nal. The results of the
unsteady radiative±conductive heat transfer are generalized by using similarity theory methods. 7 2001 Elsevier

Science Ltd. All rights reserved.

1. Introduction

The analysis of heat and mass transfer in liquid dro-
plets, known as the `droplet problem', is important for
the knowledge of thermal technological processes in

dispersed system regularities and natural phenomena.
Investigations of the `droplet problem' are important
not only for the optimization of traditional liquid fuel

burning and high temperature gas cooling processes
[1±6], but also for various non-traditional problems
like dispersed working body (liquid metal) cooling pos-
sibilities in space shuttles [7], regularities of meteoritic

descent in the atmosphere [8], emergency cooling of
nuclear reactors' active zone with liquid (water) jets
[9].

Thorough scienti®c work reviews about `droplets'
showing the research stages in di�erent periods of the
20th century are presented in [2,3,10±13]. Heat and

mass transfer in pure liquid droplets, evaporating in
low temperature media was discussed in earlier

research [10]. The processes of energy and mass trans-
fer were thoroughly discussed in later studies. Several

important factors were evaluated, i.e. gas ¯ow, process
unsteadiness, the dependence of radiation and physical
properties on temperature, also the in¯uence of the

Stefan ¯ow on energy and mass transfer. Transfer pro-
cesses inside and outside a droplet are closely related.
The whole complex of these transfers in¯uences the
interphase contact surface temperature, the magnitude

of which can be de®ned by the equation of energy bal-
ance on the droplet surface:X

~q�R�� �
X

~q�Rÿ� � 0, �1�

which requires that all incoming and outgoing droplet

surface energy ¯uxes must be equal. From a math-
ematical point of view, condition (1) is a system of
integral±di�erential equations. Their solution is quite

complicated, therefore the `droplet' problem is solved
using certain premises. Under the statement that
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droplet evaporation is in equilibrium, the unsteadiness

of transfer processes can thus be neglected [10,14±17].

In such a case all the energy, which a droplet gets

from outside, is used for the phase changes. This pre-

mise neglects the importance of the internal problem,

i.e. a droplet is said to be isothermal. The problem of

evaporating droplet outer convective heating has been

successively solved using the methods of similarity the-

ory, taking into account the interaction of convection

and mass transfer. In that case the intensity of the eva-

porating droplet convective heating is calculated using

well-known criterion equations which de®ne the con-

vective heat transfer of a solid sphere. These equations

are modi®ed introducing the corrections evaluating the

in¯uence of mass transfer on convection [14±20].

When the temperature of the liquid dispersed into

gas is smaller than the equilibrium evaporation tem-

perature corresponding to the boundary heat and mass

transfer conditions, a droplet is being heated up inten-

sively, therefore transfer processes are distinctly

unsteady, hence it is impossible to neglect the inner

`droplet' problem. When radiative heat transfer is not

taken into account, the inner `droplet' problem can be

solved easily using `in®nitive conductivity' and `rapid-

mixing limit' models [12]. According to them, the

transfer processes inside a droplet are so intensive that

in transient heating the temperature within the droplet

is spatially uniform. When thermal conductivity of the

liquid is ®nite the temperature ®eld is de®ned by the

`conduction-limit' mathematical model [3]. The in¯u-

Nomenclature

a thermal di�usivity
B Spalding transfer number
cp mass speci®c heat

D mass di�usivity
h enthalpy per unit mass
I control time index

Io intensity of radiation
Io0 spectral index of radiation of a black body
ke e�ective conductivity parameter

ko spectral index of absorption
L latent heat of evaporation
m mass ¯ux density
n number of the term in in®nite sum

no spectral index of refraction
N number of terms in in®nite sum
Nu Nusselt number

p pressure
Pe Peclet number
Pr Prandtl number

q heat ¯ux density
R radius of a droplet
r coordinate of a sphere

ro spectral index of light re¯ection
Re Reynolds number
R� universal gas constant
t time

T temperature

Greek symbols

o wave number
w dimensionless interaction parameter
Dw slip velocity of a droplet in gas

b, g angles, estimating the peculiarities of spherical
geometry when calculating radiation

Z dimensionless coordinate

j azimuthal angle
l thermal conductivity; wavelength
m molecular mass

y angle between the opposite direction of the
normal to the surface element and the incident
beam

r density
t optical thickness

Subscripts
b source of radiation
f evaporation
g gas

i time index in a digital scheme
I index of control time
J index of sphere cross-section

c convective
l conductive
m mass average

r radiation
s surface of an interphase contact
v vapor

vg gas±vapor mixture
o spectral
a total
0 initial state

1 far from a droplet

Superscripts

k number of iterations
' variable
0 interaction free

`+' external side of a surface
`ÿ' internal side of a surface
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ence of liquid circulation inside the droplet on heat
transfer is taken into account in the `e�ective conduc-

tivity' model [19]. But these droplet internal heat trans-
fer mathematical models cannot be used when it is
necessary to calculate the combined energy transfer in

evaporating semitransparent liquid droplets in radiat-
ing media. In this case it is necessary to use additional
mathematical models that describe energy transfer by

radiation in a droplet. Simply the energy supplied to a
droplet by radiation from outside can be calculated
according to integral [21,22] and monochromatic

[23,24] radiative properties. Various spectral models of
heat transfer by radiation enable us to evaluate the
peculiarities of semitransparent liquid optical charac-
teristics [15,25±27], the in¯uence on the transfer pro-

cesses of the dependence of these peculiarities on liquid
temperature [28] and the radiation absorption in a
droplet. Usually the interaction between di�erent

transfer mechanisms is not taken into account and
only the energy brought to a droplet by radiation is
calculated. The necessity of the evaluation of the

above-mentioned interaction has been proved [26,29].
The calculation of combined energy transfer becomes
simpler when convection and conduction components

of the total energy ¯ux are calculated by neglecting the
in¯uence of radiation and the interaction of di�erent
transfer mechanisms is evaluated by similarity methods
[30,31]. `Single' droplet models allow simulating the

dispersed systems. State transformation of the dis-
persed systems is calculated according to the total
energy use for heating of condensed media and phase

changes. Thus, the equations describing `droplet' in-
ternal and external problems have to be joined to the

equations describing the state of a gaseous phase [32].
This work is devoted to the study of unsteady radia-

tive±conductive heat transfer regularities in evaporat-

ing semitransparent liquid droplets.

2. Problem formulation

The energy balance (Eq. (1)) for dispersed semitran-

sparent liquid droplet in a radiating media can be
expanded (Fig. 1):

qr�R�� � qc�R�� ÿ qf �R�� ÿ qS�Rÿ� � 0: �2�
The interaction of radiation and convection pro-

cesses is insigni®cant [33] in traditional thermal tech-

nologies; therefore, it is possible to calculate radiative
and convective components of a droplet outside com-
bined heating separately. The mass ¯ux from an

evaporating droplet dynamically in¯uences the tem-
perature and velocity ®elds of a gas ¯ow passing
around the droplet. The mass ¯ux from the evaporat-

ing droplet also changes gas composition; therefore, it
is necessary to evaluate mass transfer in¯uence on the
outer convective heating. The outer convective heating
intensity of an evaporating spherically symmetric dro-

plet can be calculated according to well-known
equations which de®ne the convective heat transfer of
a non-evaporating sphere. These equations should be

multiplied by a certain Spalding heat transfer number
B function

Nuv � Nu � f �B �: �3�
Here Spalding heat transfer number B equals:

B � cpg�Tg ÿ Ts�
L� �q=m� �4�

Generally in Eq. (4) q means the heat ¯ux in the inner

side of a droplet surface [34]. The magnitude of q is
proportional to the temperature gradient in the dro-
plet. q is assumed to be positive when its vector is di-

rected towards the droplet center. Vapor mass ¯ux m
is assumed to be positive when a droplet is evaporat-
ing. Various expressions for the calculation of function
f(B ) and convective heating intensity Nu for a non-

evaporating sphere can be found in the literature. The
investigation results of heat transfer in evaporating
droplets are in good correlation when the intensity of

convective heat transfer is calculated by [16,17]:

Nuv � �2� 0:57Re1=2 Pr1=3��1� B �ÿ0:7: �5�
In the case of equilibrium droplet evaporation all
outer heating energy is used for droplet evaporation

Fig. 1. Energy balance on the surface of an evaporating

droplet.
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therefore, the liquid±vapor mass ¯ux depends on the
total heat ¯ux supplied to the droplet:

m � qS�R��
L

, �6�

and in Eq. (4) q corresponds to the radiation energy

that has been absorbed in a droplet and brought to its
surface, hence q0ÿqr(Rÿ). Since the spectral radiation
absorption coe�cients are ®nite, radiation is not

absorbed in a droplet surface

qr�Rÿ� � qr�R��: �7�

Taking into account expressions (4)±(7), heat ¯ux by
external convection in the case of droplet equilibrium

evaporation can be calculated by the equation:

qc�R�� � lvg�Tg ÿ Ts�
2R

�2� 0:57Re1=2 Pr1=3�

�
�
1� cpg�Tg ÿ Ts�

L

�
1� qr�R��

qc�R��
��ÿ0:7

:

�8�

During the unsteady droplet evaporation the liquid±
vapor mass ¯ux depends on the ¯ux di�erence between
the heat supplied to the droplet and the heat taken

inside the droplet:

m � qS�R�� ÿ qS�Rÿ�
L

, �9�

and in Eq. (4) q corresponds to the di�erence between
the total heat ¯ux and radiation ¯ux in a droplet:

q � qS�Rÿ� ÿ qr�Rÿ�: �10�

In order to calculate m and q in Eq. (4), it is necessary
to know the total heat ¯uxes qa(R

+, t ) and qa(R
ÿ, t )

and to evaluate the direction of temperature gradient
vector in a droplet. Therefore, it is necessary to calcu-
late the temperature ®eld in a droplet.

When a combined energy transfer takes place in a
semitransparent droplet, the total heat ¯ux can be cal-
culated by summing up the components of radiative

and conductive ¯ux:

qS�Rÿ� � qr�Rÿ� � keql�Rÿ�

� qr�Rÿ� � kel
@T�r, t�
@r

����
r�Rÿ

, �11�

evaluating the in¯uence of convection inside the
droplet by e�ective conductivity parameter le=kel [19]

ke � 1:86� 0:86 tanh

�
2:245 log

�
Pe

30

��
� �12�

The temperature ®eld of an evaporating sphere in

the case of unsteady radiative±conductive energy trans-
fer is de®ned by the equation:

@T�r, t�
@ t

ÿ a
@ 2T�r, t�
@r 2

ÿ 2a

r

@T�r, t�
@ r

� 1

rcpr 2
@

@ r
�r 2qr�r, t��� �13�

Radiation ¯ux is calculated by the integration of spec-
tral intensity over the wave number o, azimuthal angle
j and angle y between the opposite direction of the

normal to the surface element and the incident beam:

qr �
�1
0

� 2p

0

�p
0

Io�y, j�sin y cos y dy dj do: �14�

The change of spectral intensity along direction s is
de®ned by [33]:

@Io
@s
� ko�n 2

oIo0 ÿ Io�, �15�

If the initial

T�r� � T0, R � R0, Io�R� � Io�R0�, when

t 0 � 0,
�16�

and boundary

T�R� � Ts�t�, R � R�t� Io�R� � Io�R�t��,

when t 0 � t,
�17�

heat and mass transfer conditions are valid and
according to the statement that the right hand side
member of Eq. (13) is determined at that time, when
the radiation ¯ux density qr(r, t ) is calculated accord-

ing to a more precise temperature ®eld in a droplet,
achieved in the earlier iteration, the radiation±conduc-
tion Eqs. (13)±(17) problem is brought into the

Dirichle problem [35], with the help of function
f(r, t )=r[T(r, t )ÿTs(t )] [24]. The solution of the
Dirichle problem is an integral temperature ®eld

equation:

T�r, t� � Ts�t� � 2

r

X1
n�1

sin
npr
R

�t
0

fn�R, t 0 �

� exp

"
ÿ a

�
np
R

� 2

�tÿ t 0 �
#

dt 0,

�18�

where
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fn�R, t 0 � � �ÿ1�n R
np

dTs

dt
� 1

Rrcp

�R
0

qr�r 0, t 0 �

�
�

sin
npr 0

R
ÿ npr 0

R
cos

npr 0

R

�
dr 0� �19�

As the change of spectral intensity along direction s is

de®ned by the change in the direction of a sphere
radius (Fig. 1):

dIo
ds
�2
�r 2 ÿ R 2 sin 2 b�1=2

r

dIo
dr

, �20�

and Eq. (15) is multiplied by an integrating factor

exp

"
2
�r
rj

r 0ko dr 0��������������������������������
r 0 2 ÿ R 2 sin 2 b

p #
, �21�

(where rj 0 R, sign `ÿ' as 0 R s < R cos b and rj 0
R sin b sign `+' as R cos b R s R 2R cos b [25]), Eq.

(14) is transformed in the following way:

qr�r� � 2p
�1
0

�p=2
0

cos g sin g�Io�R, g�exp�ÿtRr �

�
�R
r

n 2
oI0o exp�ÿtr 0r � dtr

0
r

ÿ Io�R, g� exp�ÿtRr sin g ÿ trr sin g�

ÿ
�r
r sin g

n 2
oI0o exp�ÿtrr 0 � dtrr0

ÿ
�R
r sin g

n 2
oI0o exp�ÿtrr sin g ÿ tr

0
r sin g� dtr

0
r � dg do: �22�

In Eq. (22) symbolic designations of the optical thick-
ness and its derivative have the following meaning:

trjri �
�rj
ri

dtrjri �
�rj
ri

ko dr 0������������������������������������
1ÿ �r=r 0 � 2 sin 2 g

q , �23�

where ri and rj correspond to the limits of optical
thickness in Eq. (22). Angles y, b, and g have the fol-
lowing relation (Fig. 1):

R sin b � r sin g, g � pÿ y: �24�
g0b, when r0R. The spectral intensity from the inner
side of the droplet surface Io (R, g ) consists of the

intensity of light that has been re¯ected from the inner
side of the droplet surface by angle b and the intensity
of light energy incoming the droplet from outside in

the same direction:

Io�R, g� �
n 2
o�R��1ÿ ro�b��Io0�Tb� � ro�b�

�R
R sin g

n 2
o�r 0 �Io�r 0 �� exp�ÿtRR sin g ÿ tr

0
R sin g� � exp�tRr 0 ��dtr

0
R

1ÿ ro�b�exp�ÿtRR sin g�
: �25�

After di�erentiation of the Eq. (18) along coordinate r,
the equation of temperature ®elds derivative @T/@r is

received:

@T�r, t�
@r

� 2
X1
n�1

�
np
rR

cos
npr
R
ÿ 1

r 2
sin

npr
R

��t
0

fn�R, t 0 �

� exp

"
ÿ a

�
np
R

� 2

�tÿ t 0 �
#

dt 0:

�26�

When condition r0R is valid:

@T�r, t�
@r

����
r�Rÿ
� 2p

R 2

X1
n�1

n�ÿ1�n
�t
0

fn�R, t 0 �

� exp

"
ÿ a

�
np
R

� 2

�tÿ t 0 �
#

dt 0:

�27�

Energy expenditure for a phase change is pro-

portional to the liquid vapor ¯ux density on a droplet
surface:

qf �R�� � Lm�R��: �28�

The liquid±vapor ¯ux density during the evaporation
is de®ned by [24]:

m�R�� � D

Tvg�R��
mg

RR�

(
pv�Ts� ÿ pv,1 �

�mv

mg

�

�
�
p ln

pÿ pv,1
pÿ pv�Ts� ÿ pv�Ts� � pv,1

�)
, �29�

which evaluates the in¯uence of the Stefan ¯ow on the

mass transfer. The evaporation dynamics of a spheri-
cally symmetric droplet is de®ned by an equation:

dR

dt
� ÿm�R

��
r

: �30�

The solution of Eqs. (29) and (30) for initial radius
droplet R0 is:
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R 2�t� � R 2
0 ÿ 2

�t
0

r
D

Tvg�R��
mg

R�

�
(
pv�Ts� ÿ pv,1 �

�mv

mg

�

�
�
p ln

pÿ pv,1
pÿ pv�Ts� ÿ pv�Ts� � pv,1

�)
dt 0:

�31�

Eqs. (2)±(31) describe heat and mass transfer of a

semitransparent liquid droplet evaporating in the
radiating media and allow us to investigate numerically
the peculiarities of radiative±conductive heat transfer
in the droplet.

3. Numerical solution

Eqs. (2)±(31), which describe heat and mass transfer
of a semitransparent liquid droplet, evaporating in the
radiating media, can be solved numerically, by the iter-

ation method. Using this method, number J of a con-
trol droplet cross-section is selected freely; the position
of the cross-section is de®ned by dimensionless sphere
coordinate Zj (Z=0 when j=1; Zj=1 when j=J ). Con-

trol time t is selected and number I of time coordinate
change steps is provided (ti=0 when i = 1; ti=t when
i=I ). The numeric calculation scheme of expression

(Eq. (2)) is formed under the statement that surface
temperature of an evaporating droplet is known during
time ti. According to this scheme the calculation pro-

gram has been made in which the iterative calculations
are proceeded by the fastest descent method. For every
time ti, the iterative calculations are proceeded until a
certain temperature of an evaporating droplet T s,i

k is

determined, at which the members of expression (2)
satisfy the following condition:������1ÿ

X
qki �Rÿ�X
qki �R��

������100%R0:1%: �32�

When forming the numerical calculation scheme
of the temperature ®eld in a droplet, the following

premises are made: the temperature derivative of a
droplet surface is constant during the time change
interval Dti=ti + 1ÿti, the change of the function (Eq.

(19)) integral is negligible and the change of the radi-
ation ¯ux in the interval of a sphere coordinate change
is linear. Then the parameters of radiative±conductive

energy transfer in a droplet at an instant of time I and
in a droplet cross-section j are calculated in the follow-
ing way:

Yj,I � CI �
X1
n�1

fn,j
XIÿ1
i�1

�
�ÿ1�n Ri

np
Ts,i�1 ÿ Ts,i

ti�1 ÿ ti
� Ei

ricp,iRi

�

� 1

ai

�
Ri

np

� 2
(

exp

"
ai

�
np
Ri

� 2

�ti�1 ÿ tI�
#

ÿ exp

"
ai

�
np
Ri

� 2

�ti ÿ tI�
#)

, �33�

where

Ei � Ri

XJÿ1
j�1

�
qr,j ÿ qr,j�1 ÿ qr,j

Zj�1 ÿ Zj

�

�
�
2

np
�
cos�npZj � ÿ cos�npZj�1� � Zj sin�npZ�

ÿ Zj�1 sin�npZj�1�
��

� Ri

XJÿ1
j�1

qr,j�1 ÿ qr,j
Zj�1 ÿ Zj

��
3

n 2p 2
ÿ Z 2

j�1

�
sin�npZj�1�

ÿ
�

3

n 2p 2
ÿ Z 2

j

�
sin�npZj � ÿ �Zj�1 cos�npZj�1�

ÿ Zj cos�npZj ��
3

np

�
:

�34�

Parameters CI and fn,j individualize expression (33) for

calculation of various parameters of unsteady radia-
tive±conductive heat transfer in an evaporating
droplet, in particular: temperature ®eld, Yj,I 0T(r, t ),

CI 0 Ts,I and fn,j=2 sin(npZj)/rj; temperature gradient
on a droplet surface, Yj,I 0 @T/@r|r=R, CI=0 and
fn,j=2pn(ÿ1)n/RI

2; temperature in a droplet center, Yj,I

0T(0, t ), CI0Ts,I and fn,j=2pn/RI; local temperature

gradient, Yj,I 0 @T/@r, CI=0 and fn,j=2pn cos(npZj)/
(rjRI)ÿ2 sin(npZj)/rj

2.
The local radiation ¯ux density in a droplet is calcu-

lated according to the temperature ®eld that has been
made more precise in earlier iteration. The integral of
the wave number in expression (22) is calculated nu-

merically using the rectangular method, the integral of
angle g using the Gauss method, the subintegral func-
tion expressed by [36]:
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F�o, g, r� � Io�R�
h
exp�ÿtRr � ÿ exp�ÿtRr sin g ÿ trr sin g�

i
�
XJÿ1
j�kk

n 2
o,jI0o,j�exp�ÿtrjr � ÿ exp�ÿtrj�1r ��

ÿ n 2
o,j0I0o,j0�exp�ÿtrr sin g� ÿ exp�ÿtrr sin g ÿ trj0r sin g��

ÿ
XJÿ1
j�j0

n 2
o,jI0o,j�exp�ÿtrr sin g ÿ trjr sin g�

ÿ exp�ÿtrr sin g ÿ trj�1r sin g�� ÿ n 2
o,j0I0o,j0�exp�ÿtrrj0 �

ÿ exp�ÿtrr sin g�� ÿ
Xkkÿ1
j�j0

n 2
o,jI0o,j�exp�ÿtrrj�1 �

ÿ exp�ÿtrrj ��:

�35�

In the most common case optical thickness in ex-
pression (35) is calculated:

trjr sin g � trj0r sin g � trjrj0 � ko,j0

��������������������������������
r 2j0 ÿ r 2 sin 2 g�

q Xjÿ1
jj�j0

� ko,jj

� ���������������������������������
r 2jj�1 ÿ r 2 sin gÿ

q ����������������������������
r 2jj ÿ r 2 sin 2 g

q �
,

�36�

under the validity of condition that rj0ÿ1 < r sin g R rj0
Spectral optical e�ects on the interphase contact surface
(light refraction angle, surface re¯ection index, the Brew-
ster angle) are calculated according to technique [37].

During every iteration the convective heating inten-
sity of an evaporating sphere is being adjusted by sol-
ving the equation system

Bi � cpg,i�Tg ÿ Ts,i �
Li

�
1� ke

ql,i�Rÿi �
qc,i�R�i �

�

qc,i�R�� � lvg,i�Tg ÿ Ts,i �
2Riÿ1

�2� 0:57Re1=2i Pr1=3i ��1

� Bi �ÿ0:7, �37�

where ql,i (Rÿ) during the evaporation process can
change its sign: it is said to have negative value when

@T/@r|r=R>0.
The dynamics of an evaporating droplet change is

calculated in the following way:

R 2
I �R 2

0 ÿ 2
XIÿ1
i�1

�ti�1 ÿ ti �Dimv

riR�Ts,i

(
pv�Ts,i � ÿ pv,1

�
�mv

mg

��
p ln

pÿ pv,1
pÿ pv�Ts,i � ÿ pv�Ts,i � � pv,1

�)
:

�38�

Condition (32) is satis®ed when the temperature of

the droplet surface has been calculated with the accu-
racy of 20.01 K [38]. Therefore, it is necessary to
evaluate 150 members in the in®nite sum of expression

(33) and to choose such duration of time change inter-
val Dti, that the mean mass temperature of the heating

Fig. 2. Temperature ®eld in an evaporating droplet in the case

of radiative±convective (a) and convective (b) external heating

(t, s: 1, 0.0012; 2, 0.0044; 3, 0.0102; 4, 0.0182; 5, 0.0226; 6,

0.0292; 7, 0.0481; 8, 0.108; 9, 0.1634; Tg=1500 K; R0=100

mm).
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droplet change in it not more than by 1 K. In the cal-
culation program the condition is satis®ed automati-

cally.
The accuracy of the radiation ¯ux calculation

depends on the chosen radiation spectrum interval and

the number of its divisions. When choosing these div-
isions it is necessary to evaluate the peculiarities of the
spectral optical characteristics of the semitransparent

liquid. The spectral optical characteristics of water
have been investigated very well [39,40]. The calcu-
lation results of the local radiation ¯ux in water

droplets stabilize due to expression (22) in the case
when the radiation spectrum of 0.8 6 800 mm wave-
length is divided into 150 parts [27]. The ®ve-point
Gauss scheme is used when expression (22) is inte-

grated according to angle g. The unsteady heat transfer
has been examined numerically in evaporating water
droplets of initial temperature 280 K. The droplets

were carried by a radiating or non-radiating gas ¯ow
when ke=1; the temperature of the ¯ow is Td. The pre-
mise was made that the slip velocity of a droplet in gas

equaled zero. The radiative±convective droplet heating
was modeled on the condition that the radiation source
is absolutely black and its temperature equals gas tem-

perature.

4. Results and discussion

The change of droplet surface temperature, droplet

lifetime, unsteady temperature ®eld and total heat
¯uxes inside and outside the droplet were calculated
numerically, as the droplet was evaporating in dry air

at 373±1500 K temperature and under 0.1 MPa press-
ure. The heating dynamics of an evaporating droplet
strictly depend on the method of droplet heating
(Fig. 2). When the droplet is heated by convection or

conduction the entire outer heating energy is supplied
to the droplet surface. Some heat from hot gas will be
required to overcome the latent heat of vaporization

while some is transferred to the interior of the droplet.
During the unsteady evaporation regime, the highest
droplet temperature occurs on its surface. The droplet

becomes isothermal (Fig. 2b) again at the moment of
evaporation equilibrium setting.
A semitransparent liquid droplet absorbs radiation

energy by its entire volume. Compared to the case of

convection, the heating rate (Fig. 3) of the droplet
increases signi®cantly and the character of the tem-
perature ®eld gradient (Fig. 4) changes under the in¯u-

ence of absorbed radiation energy. According to the
maximum place in the instant temperature ®eld of the
evaporating droplet it is possible to pick out three

periods of the state change for an evaporating droplet:
initial, during which the maximum temperature is on
the droplet's surface; transient, during which the

droplet's middle layers have a higher temperature, and
®nal, during which the maximum temperature is in the

droplet's center (Fig. 5). The time instant of equi-
librium vaporization settling divides the ®nal period
into two parts: the ®rst, during which the droplet is

still being heated and the second, during which the
droplet can even cool (Fig. 2a). Due to the radiation
in¯uence the droplet will reach the equilibrium vapor-

ization regime in a non-isothermal state. At the
moment of equilibrium vaporization beginning, the
maximum local temperature ®eld is reached inside the

Fig. 3. Change of the heating rate of an evaporating droplet

in the case of radiative±convective (a) and convective (b)

external heating.
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droplet (Fig. 2a, curve 7), and local temperature gradi-
ents ensure the withdrawal of absorbed energy into the

droplet's surface. Then ql(r, tp)=qr(r, tp), therefore
qa(r, tp)=0 (Fig. 6). The total heat ¯ux represents the
intensity of a droplet state change while the conduction

component of the total heat ¯ux describes the intensity
of the energy distribution inside the droplet. The con-
ductivity component vector during the initial period is

directed to the center of the droplet and during the
®nal period into the surface, while during the transient
period the vector changes its direction in the cross-sec-

tion at which local temperature gradient equals

(Fig. 4a). Fig. 7 shows the peculiarities of the total
heat ¯ux radiation component change during the evap-

oration process. A negligible change in the radiation
absorption character is caused by a change in the
water optical characteristics, as a droplet is being

heated intensively during the initial stage of the evap-
oration process. During the ®nal evaporation stage
radiation ¯ux decreases, and this is because the change

of density inside the droplet approaches a linear char-
acter (Fig. 7).
The magnitudes of the energy ¯uxes on the inter-

phase contact surface are related by a complicated but
strict interrelation of di�erent physical nature transfer
processes (Fig. 8). During the initial period the con-
ductive heat ¯ux on the inner droplet surface corre-

sponds to that part of the external convective heat ¯ux
which heats the droplet. The magnitude of the ¯ux
decreases from ql(R

ÿ, 0) 0 qc(R
+, 0) to zero (Fig. 8,

curve 4). During the transient and the ®rst part of the
®nal periods the conductive heat ¯ux on the inner
droplet surface corresponds to that part of radiative

heat ¯ux which is taken into the droplet surface and is
used for evaporation. During this time interval the
above mentioned ¯ux density increases from zero to

ql(R
ÿ, tp) 0 qr(R

+, tp). This value is reached at the
beginning of equilibrium evaporation. The droplet is
heated more under the in¯uence of radiation (Fig. 2).

Fig. 5. Peculiarities of the temperature ®eld in characteristic

periods of the state change for evaporating droplets.
�T=[T(Z, t )ÿTmin(t )]/[Tmax(t )ÿTmin(t )]. (t, s: 1, 0.0012; 2,

0.0182; 3, 0.0226; 4, 0.0241; 5, 0.0255; 6, 0.0270; 7, 0.0292; 8,

0.1634).

Fig. 4. Change of the temperature ®eld gradient in an evapor-

ating droplet (boundary conditions are the same as in Fig. 2).
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The temperature increment of the evaporating droplet
in the case of radiative±convective droplet heating

compared to the droplet temperature settled down
during the convective heating is proportional to the
ratio between radiative and convective heat ¯uxes. A
change in the droplet diameter acts on the above men-

tioned ¯ux di�erently: when the intensity of the radi-

ation ¯ux density decreases the intensity of convective
heating increases. During the second part of the ®nal

period the radiation intensity increases and the droplet
diameter rapidly diminishes (Fig. 9). During this
period the ratio of radiation and convection heat ¯uxes

decreases, and the corresponding temperature incre-
ment changes while the droplet cools. Therefore, the
magnitude

of the heat ¯ux density of conduction on the inner
droplet surface during this period of time depends on
the radiating heating intensity and the rate of the mass

mean temperature change of an evaporating droplet:

ql�Rÿ, t� � qr�R�, t� ÿ 1

3
rcpR

dTm

dt
: �39�

However, the contribution of the second member on

the right hand side of Eq. (39) is negligible. This is
shown by curves 5 and 3, also 4 and 2 which almost
coincide when t/tp > 1 (Fig. 8). The inter-distribution

of energies, used for droplet heating and evaporation,
is shown by the ratio of curve ordinates 5 and 6
(Fig. 8). A su�cient distinct area under curve 6 con-

®rms the importance of the evaluation of droplet heat-
ing (unsteadiness of transfer processes) when
calculating the evaporation of dispersed liquid.
Under the in¯uence of heat radiation the intensity of

evaporation increases signi®cantly, hence the droplet
evaporation time shortens and the duration of

Fig. 6. Variation of the total heat ¯ux in an evaporating

droplet (t, s: 1, 0.0012; 2, 0.0044; 3, 0.0102; 4, 0.0182; 5,

0.0226; 6, 0.0292; 7, 0.0481; 8, 0.108).

Fig. 7. Variation of the radiation heat ¯ux in an evaporating

droplet (t, s: 1, 0.0012; 2, 0.0292; 3, 0.0481; 4, 0.0108; 5,

0.1416; 6, 0.1576; 7, 0.1634).

Fig. 8. Variation of the energy balance components on the

surface of an evaporating droplet.
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unsteady evaporation changes (Fig. 10). As the gas
temperature increases and the droplet lifetime and dur-
ation of unsteady evaporation decreases their ratio

also decreases (Fig. 10) and the change of heat ¯ux
ratios qr/qc and ql/qc is more distinct during the evap-

oration process (Fig. 11). At time instant t/tp=1 the
above mentioned ¯ux ratios are identical; later their
magnitudes are close to each other. With convective

heating the magnitude of number B changes only
during unsteady evaporation (Fig. 12). Its change is
stipulated by the changeable ratio between the energy

that heats the droplet and the energy that causes phase
changes. Due to the in¯uence of radiation, heat trans-
fer number B changes during the entire evaporation

process. This is also stipulated by the change of the
ratio between radiation and convection heat ¯uxes.
This ratio approaches zero at the end of the evapor-
ation process, therefore, the radiation in¯uence is wea-

kened. The calculated values of the heat transfer
number correlate with the experimental results of other
studies [14,16] (Fig. 12). The experiments have been

carried out under the conditions of equilibrium evapor-
ation of a water droplet in the presence of droplet con-
vective and radiative±convective heating. During the

numerical experiment slightly bigger values of number
B in the case of convective heating have been received.
This fact can be explained in the following way: when

boundary conditions qr/qc=0, Dw=0 and pv,1=0 are

Fig. 10. Dependence of droplet lifetime and unsteady evapor-

ation time on the gas temperature and the heating way of

droplet: 1 and 2, radiative±convective; 3 and 4, convective

(R0=100 mm, T0=280 K).

Fig. 9. Dependence of evaporation process on the heating

way of droplet: 1 and 2, radiative±convective; 3 and 4, con-

vective.

Fig. 11. Change of ratio between the components of total

heat ¯ux and the outer convective heat ¯ux in an evaporating

droplet (Tg, K: 1, 7±1500; 2, 8±1273; 3, 9±1073; 4, 10±873; 5,

11±673; 6, 12±473; R0=100 mm).
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valid, the droplet will be heated until the lowest poss-

ible temperature, which the droplet can acquire as it

evaporates in a gas ¯ow of constant temperature Tg.

During the numerical study when radiative±convective

heating was modelled, the condition (qr/qc)max < 0.173,

which was valid in study [16], remained active.

The above-suggested technique of a `droplet' nu-

merical study requires a lot of computer calculation

time, because it is necessary to solve the problem of

unsteady radiative±conductive energy transfer in a

droplet many times. It is much easier to calculate con-

ductive and radiative heat ¯uxes, not taking into

account the interaction of energy transfer processes, so

that the total heat ¯ux qa
0 is calculated by summing up

heat ¯uxes ql
0 and qr

0. qr
0 is calculated according to the

temperature ®eld which exists if energy is transferred

in a droplet only by conduction. Due to the interaction

of energy transfer processes qa $qa
0 , but their ratio is

proportional to the similarity parameter [30]:

qS

q0S
� 1� @ ln q0S

@ ln Dh
Dhr

Dh
� �40�

According to the statement that @ ln qa
0 /@ ln Dh 3 1

and that the ratio between changes in radiation and
total process enthalpies is proportional to the ratio of
heat ¯uxes qr

0 and qa
0 the similarity parameter in Eq.

(4) acquires the expression used in study [29]:

w � q0r
q0S
� �41�

The results of the numerical study of radiative±convec-
tive heat transfer in an evaporating water droplet were
compared when the interaction of energy transfer pro-

cesses was taken into account and was neglected in cal-
culations. The results of the experiment carried out
showed the universality of the similarity parameter

(Eq. (41)). The conductive heat transfer component of
unsteady radiative±conductive heat transfer in evapor-
ating droplets located in radiating media can be calcu-

lated by an empirical equation:

q1

q0S
� 1ÿ 0:022wÿ 10:9w 2 � 22w3 ÿ 19:6w4

� 6:5w5, �42�

Fig. 12. Dependence of heat transfer number B on gas tem-

perature and the heating way of the evaporating droplet: 1±5,

radiative±convective; 6±11, convective. Lines, calculation

results. Black dots, Yuen and Chen [14]; white dots, Renksiz-

bulut and Yuen [16] experiment results (Tg, K: 1, 6±373; 2, 7±

473; 3, 8±673; 4, 9±873; 5, 10±1073; 11±1273; R0=100 mm; qr/

qk<1.73).

Fig. 13. Generalization of the study results for unsteady

radiative±conductive heat transfer in an evaporating droplet:

1, results of calculation according to Eq. (42); 2±7, numerical

experiment (Tg, K: 2, 1500; 3, 1273; 4, 1400; 5, 1073; 6, 873;

7, 373; R0, mm: 2, 5, 6 and 7, 100; 3, 50, 4, 75).
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which signi®cantly simpli®es the engineering calcu-
lation of unsteady transfer processes in radiating dis-

persed ¯ows.

5. Conclusion

Complex heat and mass transfer processes inside

and outside a droplet are closely related. The in¯uence
of heat radiation on the change of the state of evapor-
ating semitransparent liquid droplets is important.

While calculating the intensities of droplet external
heating and evaporating, the temperature ®eld and the
total heat ¯ux in it, it is necessary to take into account
the unsteadiness of the transfer processes and their in-

teraction. The evaporation intensity of semitransparent
liquid droplets is de®ned by the total heat ¯ux of exter-
nal heating. The intensity of the unsteady droplet

evaporation is de®ned by the di�erence between the
heat ¯ux of external heating and the total heat ¯ux
inside the droplet. The ratio between heat ¯uxes q0
bqa(R

ÿ)ÿqr(Rÿ)c/qc(R+) has a signi®cant in¯uence on
the peculiarities of evaporating and heating droplet
state changes. In the case of radiative±conductive

droplet heating, q0ql(R
ÿ)/qc(R

+). Under equilibrium
droplet evaporation conditions q is close to the ratio
between the heat ¯ux of the external combined heat
transfer components qr(R

+)/qc(R
+). The combined

unsteady heat transfer in evaporating semitransparent
liquid droplets can be generalized using similarity the-
ory methods.
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